Generalised User Interface for Embedded Applications
using an LCD screen and keypad.

This article is concerned with firmware design and implementation for microcontroller-based
devices incorporating a "local" user interface (front panel) comprising an LCD screen and
keypad (or a number of push-buttons). The technique can be extended to build a graphical
user interface (GUI) comprising an LCD screen with touch-panel.

Typical applications will have many "screens" to be presented and, for each screen, a selec-
tion of user options for various actions, most of which will result in a switch to a different
screen or a change in displayed information on the current screen. For all but the most trivial
of applications, navigation from one screen to the next presents a challenge to the developer
and can easily become a convoluted mess if not handled methodically.

Test box fitted with monochrome graphics LCD module (128 x 64 pixels) and 4 x 4 keypad

A generalised Ul screen navigation system makes the firmware architecture more elegant,
the code easier to read and hence easier to modify and extend. The scheme to be presented
here integrates well with real-time embedded operating systems. However, it is also suitable
for firmware architectures without a 3rd-party embedded OS. With the exception of
applications at the very high end of the complexity scale, a 3rd-party OS is unnecessary and,
in the author's experience, usually introduces inefficiencies and annoying restrictions.

An example main function of a firmware architecture without a 3rd-party embedded OS is
given below. The example application comprises a number of "background tasks", i.e.
functions which are executed periodically, scheduled by (but not called directly from) a real-
time (or relative time) clock interrupt service routine. Non-periodic (ad hoc) background tasks
may be executed when activated by a system event, e.g. peripheral signal, timer expiry,
signal from another task, etc.

It is important to note that background tasks must be "non-blocking”, i.e. must not contain
software delays or wait loops. This requirement is best achieved by implementing back-
ground tasks as state machines. That topic is outside the scope of this article, but there is an
abundance of literature on software state-machine design available on the Internet.

The example application includes a "local" user interface ("LUI" or simply "UI") and a
command-line interface (CLI). The latter is implemented by a serial port (UART) to which
may be connected a PC running a terminal emulator application (e.g. PuTTY-tel).



int main(void)
{
InitializeMCU();
Init_Application();
LUI_NavigationInit(); // Initialize LUI
PrepareForNewCommand(); // Initialize CLI

while ((1 + 1) == 2) // main loop
{
BackgroundTaskExec();
ConsoleCLI Service();
LUI_NavigationExec();

Running "concurrently” with the background tasks and user interface routines, interrupt
service routines (ISRs) provide a real-time clock (periodic interrupt) and some hardware
device drivers, e.g. for the keypad or touch-panel. In this context, interrupting task functions
may be termed "foreground tasks".

Called frequently from the main loop, the function "LUI_NavigationExec()" checks for a
request to "switch" screens and, if true, calls a function to render the requested new screen.
At periodic intervals thereafter, typically 50ms, the Ul service routine, LUI_NavigationExec(),
calls the same screen function again to update displayed information.

The "application program interface" (API) to the local Ul is comprised of a small suite of
functions, listed below:

void LUI_NavigationInit();

int GetNumberOfScreensDefined();

uintlé GetCurrentScreenID();

uintlé GetPreviousScreenID();

void GoToNextScreen(uintl6é nextScreenID);
bool ScreenSwitchOccurred(void);
int ScreenDescIndexFind(uint16 searchlID);

void DisplayMenuOption(uintl6 x, uintl6é y, char symbol, char *text);

Each different screen to be presented is given a unigue ID number. The screen ID's are
enumerated in a header file included in the Ul code module. An incomplete example follows:

enum Set_of_Screen_ID_numbers // Any arbitrary order
{

SCN_STARTUP = 0,

SCN_HOME,

SCN_SELFTEST_REPORT,

SCN_SETUP_MENU_PAGE1,

SCN_SETUP_MENU_PAGE2,

SCN_SETUP_MENU_PAGE3,

SCN_PRESET_SELECT,

SCN_PRESET_EXT_INFO,

SCN_SET_AUDIO_RANGE,

SCN_SYSTEM_INFO,

SCN_DATA_ENTRY,

SCN_DATA_ENTRY_TEST,

NUMBER_OF_SCREEN_IDS // Last entry in table

}s

Each of the enumerated screens is further defined by a data structure comprising the screen
ID number, the address of (i.e. pointer to) a "screen update function" and a pointer to a text



string which is to be displayed in a "title bar" rendered at the top of the screen. If the title bar
string is NULL, no title bar will be displayed. This structure is termed "screen descriptor".

// An object of this type is needed for each different UI screen.

// An array of structures of this type is held in program memory.

// For screens which have no Title Bar, initialize TitleBarText = NULL
//

typedef struct LUI_screen_descriptor

{
uintlé screen_ID; // Screen ID number
void (*ScreenFunc) (bool); // Screen update function (addr)
char *TitleBarText; // Pointer to title string

} LUI_ScreenDescriptor_t;

In a more elaborate GUI with touch-screen for user input, the "screen descriptor" might be
extended to include pointers to "touch region" (hot spot) definitions and perhaps "tool bar
button" definitions. For the moment, let's keep it simple and assume a Ul with a physical
keypad or a set of push-buttons.

The "screen update function" (or simply "screen function") is not called directly from the
application program. It is called (conditionally) by the LUI_NavigationExec() routine with a
single boolean argument, the value of which is false (0) on the first call following a screen
switch, indicating to the function that it must render the new screen content. Thereafter, the
argument is "true" (1) indicating to the function that it must update any displayed information
that has changed since the previous call.

Screen (update) functions also have the responsibility to monitor user input (i.e. for
keypad/button hits) and other system "events", e.g. timer expiry flags, peripheral activity, etc,
and to take appropriate action on these signals. Thus, the Ul itself comprises a major part of
the "generic operating system”. (Where a 3rd-party OS is incorporated, Ul screen functions
may send signals to other tasks via the OS.)

Often, a "user input event" (e.g. key hit) or other signal will be expected to cause a screen
switch. The screen update function achieves this by a call to the API function
GoToNextScreen(), the argument of which is the ID number of the new screen to be
presented.

The complete user interface is defined by an array of "screen descriptors" initialised and
located in program memory (as "const" data), as in the example below:

// Screen descriptors (below) may be arranged in any arbitrary order in

// the array m_ScreenDesc[], i.e. the table doesn't need to be sorted into
// screen_ID order.

// Function LUI_ScreenIndexFind() is used to find the index of an element
// within the array m_ScreenDesc[], for a specified screen_ID.

//
static const LUI_ScreenDescriptor_t m_ScreenDesc[] =
{
{
SCN_STARTUP, // screen ID
ScreenFunc_Startup, // screen update function
NULL // title bar text (none)
s
{
SCN_HOME,
ScreenFunc_Home,
NULL // title bar text (none)
s
{
SCN_SELFTEST_REPORT, // screen ID
ScreenFunc_SelfTestReport, // screen update function
"SELF-TEST Failed" // title bar text

}s



SCN_SETUP_MENU_PAGE1,
ScreenFunc_SetupMenuPagel,
"SETUP Config Param's"

}s

{
SCN_SETUP_MENU_PAGE?2,
ScreenFunc_SetupMenuPage2,
"SETUP PRESET Param's"

}s

{
SCN_SETUP_MENU_PAGE3,
ScreenFunc_SetupMenuPage3,
"SETUP PRESET Param's"

}s

// etc
s

Screen functions are declared PRIVATE (static) because they are defined in the same code
module (source file) as the Ul service routine, LUI_NavigationExec(), and all other code
comprising the Ul. This makes the Ul code module application-specific, of course, but it still
helps to abstract the Ul from other application functions. Only the screen descriptor table
and screen update functions are application-specific. The rest of the Ul code module is
generalised and hence "portable"” to other applications. Purists might prefer to separate out
the application-specific code and put it into a dedicated source file.

Let's have a look at one or two example screen functions forming part of a real application.
At power-on/reset, the firmware runs a number of "self-test" routines taking a second or two
to finish. While the self-test is running, the Ul displays a "start-up" screen with a graphics
image and a text message: "Running Self-Test...". There is no title bar. Rather than check a
signal indicating completion of the self-test task, the screen update function simply waits for
a 3-second timer to expire, allowing ample time for the self-test to complete, but more
importantly, ample time for the user to marvel at the developer's graphic image creation.
Code for handling the timer-counter variable is built into the LUI_NavigationExec() routine.

When the timer-counter reaches 3000ms, the screen function invokes a switch to the next
screen. If the self-test passed, the next screen is a "Home" screen displaying a "main menu".
Otherwise, the next screen is a "Self-Test Results" screen showing which test(s) failed.

/*

The function below displays the "startup" screen for 3 seconds, then
triggers a switch to the "Home" (Main Menu) screen. The screen timer,
m_ElapsedTime_ms, is managed by LUI_NavigationExec().

The timer is re-started (zeroed) whenever a screen switch occurs or
if a key-hit is actioned, and at system restart.

* X X X %

*/
PRIVATE void ScreenFunc_Startup(bool update)
{
int i;
bool isFailedSelfTest;

if (lupdate) // render new screen...

{
LCD_Mode (SET_PIXELS);
LCD_PosXY(21, 2);
LCD_PutImage(Bauer_logo 85x45, 85, 45);

LCD_SetFont(BAUER_PROP_8 NORM);
LCD_PosXY(3, 56);
LCD_PutText("Running self-test...");



else // do periodic update...

{
if (m_ElapsedTime_ms >= 3000) // 3 sec timer expired

{
isFailedSelfTest = 0;

// Check self-test results... if fail, go to results screen
for (i = ©; i < NUMBER_OF_SELFTEST_ITEMS; i++)
{

}

if (g_SelfTestFault[i] != @) isFailedSelfTest = 1;

if (isFailedSelfTest) GoToNextScreen(SCN_SELFTEST REPORT);
else GoToNextScreen(SCN_HOME);

Note: The coding standard adopted by the author specifies a 2-character prefix on data
identifiers indicating their scope. The prefix "g_" means global, i.e. is declared “extern”,
whereas "m_" means that an identifier is declared “static” outside of function definitions, i.e.
its scope is restricted to the code module (sic) in which it is defined. Data identifiers without a
prefix should have their scope limited to the function in which they are defined.

Example “self-test report” screen, shown if a self-test fails during startup.

The next example screen function displays a list of user options and monitors the keypad for
specific keys, one of which might be pressed to select a corresponding option. The keypad
driver API provides a function KeyHit() which returns 'true’ if any key has been hit since the
last time the function was called. Another function, GetKey(), returns the keycode of the last
key pressed. GetKey() does not wait for user input. It assumes KeyHit() has been called
prior and that it has returned 'true’. In this manner, both the keypad driver and screen
functions are "non-blocking", i.e. they don't hold up the works.



PRIVATE

{

if (lupdate)

}

DisplayMenuOption(10,
DisplayMenuOption(10,
DisplayMenuOption(10,
DisplayMenuOption(10,
LCD_PosXY (@, 53);
LCD_DrawLineHoriz(128);
DisplayMenuOption(@, 56,
DisplayMenuOption(88, 56,
LCD_PosXY (56, 56);
LCD_PutText("-1-");

12,
22,
32,
42,

void ScreenFunc_SetupMenuPagel(bool update)

// render new screen...

‘A', "Audio Output Range");
'‘B', "Fingering Scheme");
‘C', "MIDI Basic Channel");
‘D', "Touch Keying Delay");
"*¥' ) "Home");

', "Page");

else // updating - monitor key presses

{

}

if (m_ElapsedTime_ms >= LUI_INACTIVE_TIMEOUT) // 10 minute time-out

{
}

Next, the internal workings of the Ul service routine, LUI_NavigationExec(), may be

if (KeyHit())
{

if (GetKey() == '*'
else if (GetKey()
else if (GetKey()
else if (GetKey()
)
)

o
I~

else if (GetKey(
else if (GetKey(

GoToNextScreen(SCN_HOME) ;

GoToNextScreen(SCN_HOME) ;
'#') GoToNextScreen(SCN_SETUP_MENU_PAGE2);
"A') GoToNextScreen(SCN_SET_AUDIO_RANGE);
'B') GoToNextScreen(SCN_SET_KEYING_SCHEME);
'C') GoToNextScreen(SCN_SET_MIDI_CHANNEL);
'‘D') GoToNextScreen(SCN_SET_TOUCH_DELAY);

&l Audio Outpul
[E]l Fingering Sche

MIDI Basi
B Touch Eeuir
Home '

Example “SETUP” screen (page 1 of 3), as drawn by ScreenFunc_SetupMenuPagel()

examined. Here is the source listing:




/*
* LUI Navigation engine (service routine, or whatever you want to call it).
* This is the "executive hub" of the Local User Interface.
*
* The function is called frequently from the main application loop, but...
* must not be called from BackgroundTaskExec() !!
*/
void LUI_NavigationExec(void)
{
short current, next; // index values of current and next screens
if (m_ScreenSwitchFlag) // Screen switch requested
{
m_ScreenSwitchFlag = 0;
m_ElapsedTime_ms = 0;
m_lastUpdateTime = millisecTimer();
current = ScreenDescIndexFind(m_CurrentScreen);
next = ScreenDescIndexFind(m_NextScreen);
if (next < NUMBER_OF_SCREENS_DEFINED) // found next screen ID
{
m_PreviousScreen = m_CurrentScreen; // Make the switch...
m_CurrentScreen = m_NextScreen; // next screen => current
if (m_NextScreen != m_PreviousScreen)
{
LUI_EraseScreen();
if (m_ScreenDesc[next].TitleBarText != NULL)
DisplayTitleBar(next);
}
(*m_ScreenDesc[next].ScreenFunc)(®); // Render new screen
m_screenSwitchDone = TRUE;
}
}
else // no screen switch -- check update timer
{
if (millisecTimer() - m_lastUpdateTime >= SCREEN_UPDATE_INTERVAL)
{
current = ScreenDescIndexFind(m_CurrentScreen);
(*m_ScreenDesc[current].ScreenFunc)(1); // Update current screen
m_lastUpdateTime = millisecTimer();
m_ElapsedTime_ms += SCREEN_UPDATE_INTERVAL;
}
}
}

The application program requests a screen switch by calling the API function,
GoToNextScreen(), the argument of which is the ID number of the new screen to be
presented. Most, if not all, screen switch requests occur inside screen update functions.

void GoToNextScreen(uintl6é nextScreenID)

{

m_NextScreen = nextScreenID;
m_ScreenSwitchFlag = 1;

A few static Ul system variables need to be initialized at power-on/reset. This is done by
function LUI_Navigationlnit(), thus:



/*
* LUI initialization function...
*/
void LUI_NavigationInit()
{
m_CurrentScreen = SCN_STARTUP;
m_PreviousScreen = SCN_STARTUP;
m_DataEntryNextScreen = SCN_HOME;
m_ScreenSwitchFlag = 1;
m_screenSwitchDone = 0;

Additional functions listed below complete the generalized Ul screen navigation system:

/*
Function returns the index of a specified screen in the array of Screen
Descriptors, (LUI_ScreenDescriptor_t) m_ScreenDesc[].

Return value: index of screen descriptor in array m_ScreenDesc[], or...

*
*

*

* Entry arg(s): search_ID = ID number of required screen descriptor
*

*

* NUMBER_OF_SCREENS_DEFINED, if search_ID not found.
*/
int ScreenDescIndexFind(uintl16 searchID)

{

int index;

for (index = ©@; index < NUMBER_OF_SCREENS_DEFINED; index++)
{

}

if (m_ScreenDesc[index].screen_ID == searchID) break;

return index;

Function renders the Title Bar (background plus text) of a specified screen.
The title bar text (if any) is defined in the respective screen descriptor
given by the argument scnIndex. The function is called by LUI_NavigationExec();
is not meant to be called directly by application-specific screen functions.

The location and size of the Title Bar and the font used for its text string
are fixed inside the function.

¥ X X X X X ¥ ¥ ¥ ¥

Entry arg: scnIndex = index (not ID number!) of respective screen descriptor
*/

PRIVATE void DisplayTitleBar(uintl6 scnIndex)

{

char *titleString = m_ScreenDesc[scnIndex].TitleBarText;
LCD_Mode(SET_PIXELS);

LCD_PosXY(@, 0);

LCD_BlockFill(128, 10); // Erase top line of text (1@px high)

if (titleString != NULL)

{
LCD_Mode(CLEAR_PIXELS); // Title bar is reverse video
LCD_SetFont(BAUER_MONO_8 NORM);
LCD_PosXY(2, 1);
LCD_PutText(titleString);
}

LCD_Mode (SET_PIXELS);



~
*

This function displays a single-line menu option, i.e. keytop image plus text.
The keytop image is simply a square (size 9 x 9 pixels) with a character drawn
inside it in reverse video.

The given text string is printed just to the right of the keytop image.

The character font(s) used are fixed within the function.

Entry args: x = X-coord of keytop image (2 pixels left of key symbol)
y = Y-coord of keytop symbol, same as text to be printed after
symbol = ASCII code of keytop symbol (5 x 7 mono font)
text = string to print to the right of the keytop image

* K K K X X ¥ X ¥ ¥

*/
void DisplayMenuOption(uintl16 x, uintl6 y, char symbol, char *text)
{

uintlé xstring = x + 12; // x-coord on exit

LCD_Mode(SET_PIXELS);
LCD_PosXY(x, y-1);
LCD_DrawBar(9, 9);

LCD_SetFont(BAUER_MONO_8 NORM);
LCD_Mode (CLEAR_PIXELS);

LCD_PosXY(x+2, y);

if (symbol > 0x20) LCD_PutChar(symbol);

LCD_SetFont (BAUER_PROP_8 NORM);
LCD_Mode (SET_PIXELS);
LCD_PosXY(xstring, y);

if (text != NULL) LCD_PutText(text);

Most applications will also benefit from a generalised data-entry screen function which can
be incorporated in the user interface. The screen function given below allows a real number
to be entered in similar manner to a calculator. The Title Bar text is variable (context-
dependent) and should be assigned by the currently active screen function, prior to the data
entry function, to prompt the user to enter a number and to indicate its purpose.

Four buttons on the keypad are assigned to editing the numeric input string: [A] Enters a
minus sign (must be first character), [B] Backspace (delete last character), [C] Clear entry
(show zero) and [D] Decimal point. Up to 10 characters may be input.

The asterisk key [*] cancels data entry and exits. The hash key [#] accepts the number
entered and proceeds to the next screen, the ID of which is expected to be assigned to the
variable m_DataEntryNextScreen by the screen function which led to the data entry screen
being shown. On exit with the “accept” key, the data entry function converts the input string
to a floating point value and assigns it to a variable, m_DataEntryValue. On exit with the
“cancel” key, the data entry function sets a variable m_DataEntryAccept to False (0).

Enter Pitch Offset

k1

- EDel Clear [
Cancel El Gccept

Example “Data Entry” screen

Typically, the next screen on exit from Data Entry will be a function to test the validity of the
number entered. An example of such a function is given following the data entry function.



PRIVATE void ScreenFunc_DataEntry(bool update)
{

static short charPlace = 0;

static char inputString[32];

static bool got DP = 0;

uint8 key;

uintlé xpos;

if (lupdate) // render new screen...
{
LCD_Mode(SET_PIXELS); // Draw title bar
LCD_PosXY(@, 0);
LCD_BlockFill(128, 10);
LCD_Mode (CLEAR_PIXELS);
LCD_SetFont(BAUER_MONO_8 NORM); // Title text
LCD_PosXY(2, 1);
if (m_DataEntryTitle != NULL) LCD_PutText(m_DataEntryTitle);
else LCD_PutText("Enter value...");

LCD_Mode (SET_PIXELS);

LCD_PosXY(0@, 40);

LCD_DrawLineHoriz(128);
DisplayMenuOption(@, 44, 'A', "-");
DisplayMenuOption(25, 44, 'B', "Del");
DisplayMenuOption(60, 44, 'C', "Clear");
DisplayMenuOption(105, 44, 'D', ".");
DisplayMenuOption(@, 56, '*', "Cancel");
DisplayMenuOption(82, 56, '#', "Accept");

m_DataEntryValue = 0.0;

m_DataValueAccept = 0; // Nothing entered yet
inputString[@e] = '\e’';

charPlace = 0;

got_DP = 0O;

LCD_SetFont(BAUER_MONO_16_NORM);
LCD_Mode (SET_PIXELS);
LCD_PosXY(4, 16);
LCD_PutChar('e");
}
else // do periodic update...
{
if (KeyHit())
{
xpos = 4 + charPlace * 12;
LCD_SetFont (BAUER_MONO_16_NORM);
LCD_Mode (SET_PIXELS);
LCD_PosXY(xpos, 16);

if (charPlace == @) // clear input field

{
LCD_Mode (CLEAR_PIXELS);
LCD_PosXY(4, 16);
LCD_BlockFill(12, 16);
LCD_Mode (SET_PIXELS);
}
if ((key = GetKey()) == '*') // Cancel data entry
{

m_DataEntryValue = 0.0;
m_DataValueAccept = 0;
GoToNextScreen(m_DataEntryNextScreen);



else if (key == '#') // Accept value entered

{
if (charPlace == @) m_DataEntryValue = 0.90;
else sscanf(inputString, "%f", &m_DataEntryValue);
m_DataValueAccept = 1;
GoToNextScreen(m_DataEntryNextScreen);
}
else if (key >= '@' && key <= '9' && charPlace < 190)
{
inputString[charPlace] = key;
charPlace++;
inputString[charPlace] = '\@';
LCD_PutChar(key);
}
else if (key == 'A' && charPlace == 0) // Minus sign
{
inputString[@] = '-';
charPlace++;
inputString[1] = "\0';
LCD_PutChar('-");
}
else if (key == 'B' && charPlace > @) // Backspace (Del)
{
charPlace--;
if (inputString[charPlace] == '.') got DP = 0;
inputString[charPlace] = '\@';
xpos = 4 + charPlace * 12;
LCD_Mode (CLEAR_PIXELS);
LCD_PosXY(xpos, 16);
LCD_BlockFill(12, 16);
}
else if (key == 'C') // Clear input field
{
LCD_Mode (CLEAR_PIXELS);
LCD_PosXY(@, 16);
LCD_BlockFill(128, 16);
m_DataEntryValue = 0.0;
m_DataValueAccept = 0;
inputString[@0] = '\@’;
charPlace = 9;
got_DP = 0;
}
else if (key == 'D' && charPlace < 10 && !got DP) // Decimal Point
{
inputString[charPlace] = '.';
charPlace++;
inputString[charPlace] = '\0';
LCD_PutChar('.");
got_DP = 1;
}
if (charPlace == @) // input field cleared -- show '@’
{
LCD_Mode (SET_PIXELS);
LCD_PosXY(4, 16);
LCD_PutChar('0");
}

Typically, the next screen on exit from Data Entry will be a function to test the validity of the
number entered. An example of such a function is given below...



PRIVATE void ScreenFunc_DataEntryTest(bool update)

{

char textBuf[32];

if (lupdate) // render new screen...

{
LCD_Mode(SET_PIXELS);
LCD_SetFont(BAUER_PROP_8 NORM);
LCD_PosXY (30, 22);
LCD_PutText("Input value:- ");
LCD_SetFont (BAUER_PROP_8 NORM);
if (m_DataValueAccept) sprintf(textBuf, "%8.3f", m_DataEntryValue);
else strcpy(textBuf, "N/A");
LCD_SetFont (BAUER_MONO_8 NORM);
LCD_PosXY (30, 32);
LCD_PutText(textBuf);
LCD_SetFont(BAUER_PROP_8 NORM);
LCD_PosXY(@, 53);
LCD_DrawlLineHoriz(128);
DisplayMenuOption(@, 56, '*', "Home");
DisplayMenuOption(80, 56, '#', "Exit");

}

else // do periodic update...

{
if (KeyHit())
{

if (GetKey() == '"*') GoToNextScreen(SCN_HOME); else
if (GetKey() == '#') GoToNextScreen(SCN_DATA_ENTRY);

}

}

}

Example Ul functions and screen-shots presented in this article were extracted from a digital
musical instrument project. Full details of that project and C source code are available on the
author’s website. See reference [3] below.

Bauel

J réemi

SETUFP [1

Example application “HOME” screen.

References:

[1] LCD graphics library (C code) for monochrome LCD module 128 x 64 pixels
using ST7920 LCD controller:

http://www.mjbauer.biz/mijb resources.htm#LCD%20graphics%201ib

[2] Keypad interface to microcontroller using 4 wires:
http://www.mjbauer.biz/Four-wire%20keypad%20interface.pdf

[3] Build the “REMI” — a ‘DIY’ Electronics Project by M.J. Bauer:
http://www.mjbauer.biz/Build the REMI by MJB.htm




