4th article gives the lowdown on

In this fourth article on the DREAM 6800 the author gives hints on
CHIP-8 programming. Also featured is a substitute circuit for the
6875 clock chip using low cost TTL devices and the full size artwork
for the PCB. A future article will give details of RAM expansion.

by MICHAEL J. BAUER

After a while, when the provided
video games become a bit of a yawn,
you will want to write your own
programs. There is no language as
powerful as CHIP-8 which can be learn-
ed with such ease. The function of most
of the instructions can be understood
from the table, but some need further
explanation. First, it might be an idea to
re-read the CHIP-8 summary given
in the May article.

The display instruction (DXYN] is the
most important. [t treats the screen as a
coordinate grid of dots, numbered
from 0 to 63(00-3F hex)from left to right
across the screen, and from 0 to 31 (00-
1F hex) from top to bottom. Two
variables of your choice are used to
specify the coordinates of a symbol to
be displayed. The symbol may be any
size up to 8 dots across by 16 dots
down. Larger symbols may be shown by
using more than one DXYN instruction,
possibly in a loop. Various symbols are
defined by making up a pattern of bytes
and storing this data along with the
program. As an example, let us say we
want to show an X", 7 x 7 dots in size.
Thus, Nis 7. The screen coordinates we
will choose to be variables VA and VB,
i.e. X=A and Y =B. Thus the instruction
will be DAB7. But how does the inter-
preter know where to find our symbol
pattern? A special index variable, called
“I'", can be set to point to anywhere in
the bottom 4k of memory, using an
AMMM instruction. Let us put our
pattern at location 0210 onwards, thus:-

Address Binary Data Hex Data
0210 1000 0070 82
0211 0100 0100 44
0212 0010 1000 28
0213 0001 0000 10
0214 0010 1000 28
0215 0700 0100 44
0216 1000 0010 82

To display this pattern in the upper
left hand corner of the screen, we
would initialize variables VA and VB to
cero, and set 1=210. Note, if N=0, a 16
byte pattern will result. The program,
with comments, is shown below:-

0200 6A00 VA =00
0202 6B00 VB=00
0204 A210 1=210
0206 DAB7

0208 F000 STOP
020A

020C

020E

0210 8244 DATA
0212 2810

0214 2844

0216 8200

Note that the first CHIP-8 instruction
must be at 0200. The program is ex-
ecuted by a GO from C000, which is the
interpreter’s starting address. Try set-
ting VA and VB to different starting
values, then re-run the program. Note
that these values specify the position of
the upper LH corner of the symbol.

An important feature of the SHOW
instruction is that if a symbol is dis-
played and it overlaps another symbol
already there, then the overlapping
spots are erased and variable VF (the
“flag” wvariable) is set to 01. If no
overlap, VF=00. This feature can be
used to erase a symbol, by showing it
again at the same coordinates, without
erasing the whole screen (which can be
done with a 00E0). Of course, you have
to keep track of the positions of each
different symbol used in this way.
Variable VF can be used to see if two
objects collided, in an animated game.
An object can be made to move about
on the screen by erasing it and re-
showing it in a new position each time.

SHOW 7@VA,VB

This program illustrates:-

0200 6A00 VA=00

0202 6B0O0 VB=00

0204 A210 =210

0206 DAB7 SHOW 7@VA,VB
0208 DAB7 SHOW 7@VA,VB
020A 7A01T VA=VA401
020C 7B02 VB=VB+402

020E 1206 GOTO 206

0210 8244 DATA

0212 2810

0214 2844

0216 8200

The speed and direction of motion
can be manipulated with the instruc-
tions at 20A and 20C by changing the

Set coordinates

Set pointer
Show 7-byte pattern
Jump to monitor

Pattern for “X"

values which are added. Note that ad-
ding FF is the same as subtracting 01;
(refer to a text on “two’s complement”’
arithmetic). The motion can be slowed
down by putting a time delay inside the
loop.

The random byte generator in
CHIPOS is unique, and achieves longer
sequences and higher randomisation
than conventional software pseudo-
random sequencers by utilising the fact
the program bytes are “kind-of” ran-
dom. In a VX=RND.KK instruction
(CXKK), a variable is set to a random
value which has been masked by (i.e.
ANDed with) a constant (KK). Thus,
random numbers covering a specified
range, and falling into precise intervals,
can be selected. For example, a CO1E
instruction will give only even numbers
in the range 0 to 30 (00-1E hex).

CHIPOS has built-in patterns for the
symbols 0 to 9 and A to F, and CHIP-8
provides an instruction to allow you to
display the contents of any variable as a
hex digit. Only the least significant 4

ELECTRONICS Australia, August, 1979 83

DREAM 6800 COMPUTER

bits are relevant, For example, to show
the hex value of V6, we would use an

F629 followed by a DXY5, where X and
Y are again arbitrary. The F629 sets up |
to point to the symbol corresponding
to the value of V6 (LSD).

Another useful instruction, FX33, lets
you find the 3-digit decimal equivalent
of any variable; e.g: F433 would store 3
bytes in memory, at the location
specified in 1. To display this 3-digit
number, you will need to be familiar
with another pair of instructions: FX55
and FX65.

EX55 takes the values of variablesV0:
up to VX (incl.) and stores them in
successive memory locations, indexed
by 1. FX65 does the reverse, i.e. re-loads
the variables from memory.These
powerful instructions not only extend
the number of available varia}ijles, but
also let you perform array processing.
Note that the pointer (I) auto-
increments with these two instructions,
i.e. | is advanced by the number of
variables stored or loaded (X+1),
provided that a page boundary is not
crossed. (A “page’ is 256 bytes.) Also
‘note that if X=0, only one variable
(VO) is affected.

We can therefore use F256 to load
variables V0, V1and V2 from memory at
I. If we had previously used an F433 to
store the 3-digit decimal equivalent of
V4 in memory at |, then VO, V1 and V2
would now contain the “hundreds”,
“tens”, and “units’ (resp.) of the value
of V4. These can be displayed with the

FX29 and DXYN instructions, as explain-
ed. While this may be confusing at first,
it makes for a very versatile language, as
you will come to appreciate.

A small part of a program, called a
subroutine, can be accessed several
times from different parts of a larger
program. Further, a subroutine can
“call” other subroutines (known as
subroutine nesting). Each subroutine
must end with a RETURN statement
(00EE) so that, upon completion, con-

0200 63FA V3=FA
0202 A240 =240

0204 F333 MI=DEQ,V3
0206 F265 VO:V2=MI
0208 6418 V4=18
021A 6510 V5=10
021C F029 |=DSP, V0
021E 222C DO 22C
0210 F129 |=DSP, V1
0212 222C DO 22C
0214 F229 1=D5P,V2
0216 222C DO 22C
0218 6602 V6=02
021A F618 TONE=V6
021C 6630 V6=30

021E F615 TIME=V6
0220 F607 Ve=TIME
0222 3600 - SKF v6=00
0224 1220 GO TO 220
0226 73FF V3=V3+FF
0228 00EO ERASE

022A 1202 GO TO 202
022C D455 SHOW 5@V4,V5
022E 7404 V4=V44-04
0230 O0EE RETURN

trol will return to the instruction
following the particular “DO" state-
ment (2MMM) that called it.

Everything discussed in the last few
paragraphs is illustrated in the follow-
ing program, plus the use of the timer
and tone instructions, so you can see
how easy it is. Have a close look, and try
to understand its workings. The
program counts down V3, converting it
to decimal, showing it, and bleeping,
every second.

start counter at 250
point to workspace
store dec. eq. of V3
Load same into V0:V2
set display position

display V2
display V0
display V1
bleep for 2x20 msec

wait for 48x20 msec
(total 1 sec)
check timer

decrement counter
clear screen

repeat . . .

subr. to show digit
move “‘cursor’’ right

Here is a substitute circuit for the 6875 clock chip:

4MHz
CRYSTAL

7474

1k 4
AAAA
Vi s

2/6-7404

L1>02 e >0t Yer af

2F0 O—
(2MHz)

vcc

- 2
Te ha he

7437 7404 7474

oIl

Just before the July issue was due to be run on the

01, MPU

02, MPU
(&DBE)

k! 10 02, BUS

1/6-7404
vCC

10k
- ORESET

EXT-RST O

NOTE: REMOVE 2.2uF TANTALUM CAPACITOR FROM PCB

presses, the shortage of 6875 clock chips becameapparent. It seems that it

could be several months before Motorola, Inc, USA is able to restore supplies. In the meantime, designer M.). Bauer has
produced a substitute circuit for the 6875 using cheap and readily available TTL ICs. This circuit may be built up on a small

section of Veroboard and linked to the

circuitry must also be changed slightly, as noted on the circuit above.

DREAM PCB via a ribbon cable fitted with DIL phé? (16-pin) and IC socket, in the
6875 position. When the time comes, the TTL circuit can be discarded and the 6875 plugge

in, instead. Note that the reset

ELECTRONICS Australia, August, 1979 85

DREAM 6800 COMPUTER

While the above program serves to il-
lustrate some of the trickier CHIP-8
statements, it is not a good example of
the power and efficiency of the
language. To see that, one has to
analyse a more complex, graphics
oriented program, such as an animated
video game. It is good experience to
“dis-assemble”” one or more of the
games provided, to see how the
programmer tackled the problem. You
should therefore deduce: which
numbers are instructions and which are
data; what each variable is used for;
and what is stored in various memory
workspaces; etc. (Kaleidoscope and
TV-Typewriter not recommended for
starters.) Flowcharting is also a handy
programming tool that wiil increase
your expertise.

I have presented only a very sketchy
description of how to write programs.
A lot of practical experience is the only
way to learn and Eecome proficient.
Test the operation of each of the in-
structions in a short routine, so that its
operation becomes clear. Before
attempting any complex video games,
try some of these simpler exercises:-
1. A program that waits for a key

depression, then displays the cor-

responding hex digit on the screen.

(Looping indefinitely.)

2. Same as (1), but rejects keys A to F by
returning to monitor.

3. Show an 8 x 8 symbol of your choice
on the screen and make it move left
when key 4 is held down and right
when key 6 is held (using EX9E or
EXAT).

4. Make the above 8 x 8 symbol move
randomly about the screen.

5. Program the game of NIM. Show 21

objects on the screen. Two players
take turns to remove 1, 2 or 3 ob-
jects. Player to take last object(s)
wins.

6. Imagine a 4 x 4 square game board.
The keypad is also a 4 x 4 matrix.
Program accepts a hex key, then
places a symbol in corresponding
position on screen,

7. As above, but alternating between
two different symbols.

8. Invent a two-player game based on

the above principle, and program.

your computer to win against a

human opponent.

Once you can do the above, you're
ready for Lunar Lander,LIFE, Blackjack,
and other favourites. Add a 2k RAM
board and you can try for CHESS or
STAR-TREK.

APPENDIX: HEXADECIMAL

There’s nothing complicated about
it, but it might he?p if you had 8 fingers
on each hand. Then you could count
from 0 to 15 (instead of 0 to 9) before
having to use carry. HEX is convenient
because each digit can be represented
by exactly 4 binary digits (bits), without
having any missing codes or extraneous
codes:-

Decimal Binary

0 0000
0001

2 0010

3 0011

4 0100

5 0101

6 0110

7

8

9

HEX

0111
1000
1001

LNV hWrn 2O

COMPLETE POWER
SUPPLY KIT

our advertiserment in EA. June 79

Mail orders and all enguiries to:

J R COMPONENTS

PO Box 128, Eastwood NSW 2122 Phone (02) 85 3976 Counter Sales
from Pre-Pak Electronics, 718 Parramatta Road,
Croydon NSW Phone: 797 6144

DREAM 6800 KITS

Comple

10 1010 A
11 1011 B
12 1100 &
13 1101 D
14 1110 E
15 1M F

The symbols A to F are used to
denote the numerals 10 to 15. Further-
more, 4 divides into 8 exactly; so you
can represent an 8-bit binary number
with 2 hex digits, without having any
bits left over; unlike the OCTAL (base
8) system, which has had many
programmers pulling out their hair!
Thus we can easily convert between
binary and hex, simply by grouping bits
into fours: e.g.:-

What is 26F0 in binary?

2 6 F 0

Answer = 0010 0110 1111 0000
(from above table)

What is 01111100 in hex?

0111 1100

Answer = 7 E

As well, 16=4x4, and 4+4=8, and
PIAs have 8-bit ports, which makes 16-
key keypads ideally suited. So HEX is
very convenient all round, and easy to
master once you memorize the above
table!

EDITOR’S NOTE: Reaction to the
DREAM 6800 articles has been un-
precedented and it seems that a very
large number of readers intend
building this circuit. Unfortunately,
there have been component shortages,
including the 6875 and the 2708
EPROM. But it now seems (at time of
writing, June 26) that most of these
problems are close to solution.

We are informed that programmed
2708 EPROMs containing CHIPOS are
now available from Silicon Valley stores
and from All Electronic Components
(formerly E.D. & E. Sales Pty Ltd), 118
Lonsdale Street, Melbourne, Victoria.
As well, complete kits for the DREAM
6800 are available from J.R. Com-
ponents, PO Box 128, Eastwood, NSW
2122, A

- DREAM-6800
CHIPOS
Software Manual

Fully commented program listing
plus useful data and
‘DREAMBUG’ routine. A must
for machine-code programmers.
Send cheque or postal note for
$5.00 to:-

DREAMWARE
PO Box 343
Belmont VIC 3216

ELECTRONICS Australia, August, 1979 87

